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Exact values for some two-dimensional lattice sums 

I J Zuckert and M M Robertson$ 

$ Department of Mathematics, University of Surrey, Guildford GU2 5XH, UK 
Department of Physics, University of Surrey, Guildford GU2 5XH, UK 

Received 20 December 1974 

Abstmct. Exact values are given for many two-dimensional lattice sums in terms of products 
of Dirichlet L-series. Madelung constants are included amongst the sums considered. 

1. Introduction 

In recent times interest in the exact evaluation of lattice sums has been revived, partic- 
ularly by Glasser (1973a, b). The term 'exact' in this context means that a multiple sum 
has been expressed as a product of simple sums. For example, Hardy (1919) showed that 

(m, n # 0,O) means summation over all positive and negative integer values of m and n 
but excluding the case m = n = 0. Thus in (1.1) the double sum on the left-hand side has 
been expressed as the product of two well known Dirichlet series on the right-hand side 
and we call this result exact. The Dirichlet series on the right-hand side of (1.1) are 

i ( s )  = 2 (n+l)-s ,  B(s)  = 2 ( -1)72n+1)-s .  
n = O  n = O  

We have investigated other two-dimensional lattice sums of which (1.1) is a special 
case. The sums considered were : 

Q = Q(a, b, c )  = Q(a, b, c :  s )  = 

Q" = Q"(a, b, c )  = Q"(a, b, c : s )  = 

Q" = Q"(a, b, c )  = Q"(a, b, c : s )  = 

Q"" = Qmn(a, b, c )  = Qmn(a, b, c : s )  = 

(am2 + bmn+cn2)-s 
(m.n f 0.0) 

1 
( m , n + O . O )  

( -  l)"(am2 + bmn + 
(- l)"(am2 + bmn + ~ n ' ) - ~  

(1.3) 1 
(m,n f 0.0) 

1 ( -  l)"+"(am2 + bmn + cn')-'. 

Here a, b, c are relatively prime positive integers with b < a < c and b2 - 4ac < 0. Thus 
the lattice sum given in ( 1 . 1 )  is just Q(l,O, 1 :s). Figure 1 shows how two-dimensional 
space may be divided into parallelograms having sides of lengths Ja and Jc with angle 
8 between the sides, where b = 2,/(ac) cos 8. Then (am' + bmn+cn2)'" is the distance 
between any lattice point and an arbitrary origin on the lattice. 

Q(a, b, c) is also known as the Epstein zeta function and often denoted by [(s, Q). It 
has been investigated previously, but with regard as to where its zeros lie. Thus Q(1, 0,5) 

( m . n Z O . 0 )  
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Figure 1. 

was considered by Potter and Titchmarsh (1935) and Davenport and Heilbron (1936a, b) 
who obtained some general results concerning the location of zeros. Recently Smart 
(1973) attempted to evaluate Q. He was able to transform Q(a, b, c) into other series but 
was only able to obtain Q(l, 0, 1) and Q(l, 1 , l )  which were known previously. Q(1, 0,4) 
is also known and Glasser (1973b) obtained Q(l,O, 16), the latter being required to 
evaluate a certain three-dimensional sum. Apart from knowing Q"(l,O, 1) and Q""( 1,0,1) 
little is known about Q", Q" and Q"". Here we present many results for all the forms 
given by (1.3). The results have been expressed, not as products of simple Dirichlet 
series, but as sums of products of the less familiar Dirichlet L-series of which the simple 
Dirichlet series are special cases. The properties of L-functions represented by L-series 
are stated briefly in 0 2. 

Two methods were used to obtain the results given here. One was the number 
theoretic method described by Glasser (1973b). This involved finding the number of 
representations of an integer by the binary quadratic form amz + bmn + cnz and its 
associated reduced equivalent forms with discriminant bZ - 4ac. This is a difficult 
approach, each form having to be considered individually and providing no information 
about Q", Q" and Q"". Nevertheless, it produced some results which were not obtained 
by the second method. However, this second method using 8-functions-also des- 
cribed by Glasser (1973a) and elaborated by Zucker (1974a, b)--was more flexible, 
especially in producing new results from previously known ones. For example, if 
Q(l, 0, c) was known then for odd c it was immediately possible to obtain Q""(l,O, c), or 
if c was even then Q"(l,O, c )  could be found. Again, knowing Q(l, 0, c) it was possible 
to evaluate Q(l, 0,4c) by a set procedure provided that c 3 2 mod (4), 3 mod (4) or 
4 mod (8). By either method no completely general result was obtained. The details of 
the above calculations are somewhat complicated and will be given elsewhere. 

2. "he Dirichlet L-functiom 

The Dirichlet L-functions (ErdClyi 1955) may be defined for Re s > 1 by the following 
series : 
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where k is a fixed positive integer; x(n) is a character (modulo k )  and so satisfies the 
conditions 

x(n + k )  = x ( 4  
x(m)x(n) = x b n )  (2.2) 

x(n)  = 0 if k and n have a common factor, 

We are concerned only with L-functions having real characters when x(n) = f 1. The 
simplest series is for k = 1 when x(n) = +1  for all n. This gives the Riemann zeta 
function, the simplest L-function. We list below all the L-functions relevant to this 
communication together with alternative notation used by other authors (Fletcher 
et a1 1962). Only the primitive L-series are given, ie those which cannot be expressed in 
terms of simpler L-series. We have also introduced the notation 

m 

( k , I )  = (kn+I)-'  
n = O  

for the simple Dirichlet series, since with this notation the periodicity of a given L, with k 
is exhibited. 

L ,  = 1 +2-'+3-". . = (1,l) = [(s) 

L 3 -  - 1-2-'+4-"5-'... = (3,l)-(3,2) = g ( ~ )  

L 4 -  - 1-3-s+5-"7-'.... = (4 ,1 ) - (4 ,3 )=p(~)  

L 5 -  - 1-2-"3-'+4-'+6-'... = (5 ,  1)-(5,2)-(5,3)+(5,4) 

L,  = 1 + 2 - ' - 3 - ' + 4 - ' - ~ - ' - ~ - " . ~ .  = (7, 1) + (7,2)- (793) + (774) - (795) - (796) 
L Ea - - 1 + 3-'- 5-"7-" . . = (8,1)+(8,3)-(8,5)-(8,7) = P ( S )  

= 1-3-"5-'+7-s... = (8, 1)-(8,3)-(8,5)+(8,7) = q ( S )  

LIZ = 1-5-"7-'+11-'.... = (12,l)-(12,5)-(12,7)+(12,11) 

Lz, = 1 + 3 ~ ' + 7 ~ ' + 9 ~ " 1 1 ~ " 1 3 ~ " 1 7 ~ " 1 9 ~  ' . . .  
= (20, 1)+(20,3)+(20,7)+(20,9)-(20,ll)-(20, 13)-(20, 17)-(20, 19) 

L24= = 1 + 5 ~ ' + 7 ~ ' + 1 1 ~ s ~ 1 3 ~ ' ~ 1 7 ~ ' ~ 1 9 ~ ' ~ 2 3 ~ ' . .  . 
= (24, 1)+(24,5)+(24,7)+(24,11)-(24, 13)-(24,17)-(24, 19)-(24,23) 

L2,b = 1 + 5 ~ s ~ 7 ~ ' ~ 1 1 ~ ' ~ 1 3 ~ ' ~ 1 7 ~ ' + 1 9 ~ s + 2 3 ~ ' . .  . 
= (24,1)+(24,5)-(24,7)-(24, 11)-(24,13)-(24, 17)+(24,19)+(24,23) 

L40a = 1 - 3-'+ 7-'+ 9-'+ 11 -'+ 13-'- 17- + 19-"21-'+ 23-'-27-'- 29-'- 31 -' 
-33-'+37-'-39-'. .. 

= (40,l)- (40,3) + (40,7) + (40,9) + (40, 11) + (40,13) - (40,17) + (40, 19) 

-(a, 21)+(40,23)-(40,27)-(40,29)-(40,31)-(40,33) 

+ (40,37) - (40,39). (2.4) 
It might be thought that other combinations of simple Dirichlet series would produce 
L-functions. For example, 

Le = 1 - 5 -' + 7 -' - 1 1 -' . . . = (6 , l )  - (6,5) = h(s) 
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has characters, but it may be shown that this series is just (1 +2-’)L, and hence is not 
primitive. The list of primitive L-functions of real character given above is complete 
up to Lab. As illustrated for some k there is no primitive function whilst for other values 
there may be more than one. If k is prime there is just one primitive L-function. There 
are of course many non-primitive functions and one occurs so often in our results that 
we will give it below. This is 

(2.5) 
All the above L-series except L1 consist of equal numbers of positive and negative 

terms. It may be shown that apart from L,  they all converge for Re s > 0. Further all 
the functions obey a reflection formula, namely 

L2 = 1-2-‘+3- ’ . . .  =(1-2,-’)L1 = ( 2 , 1 ) - ( 2 , 2 ) = ~ ( ~ ) .  

Lk(S) = 2’7tS-lk-’+*r (1  -s) cos(sn/2)Lk(1 -s) if X(k- 1) = - 1 (2.60) 

Lk(s) = 2SnS-1k-S+*r (1 -s)sin(sn/2)Lk(1-s) if ~ ( k - 1 )  = +1. (2.66) 

This enables us to evaluate the L-functions for all real s. Indeed it may be shown that 
the L-functions are all entire single-valued functions of real s, except for L,(s) which 
has a simple pole at s = 1. 

Each L-function takes on values given in terms of powers of n for positive integral 
values of s. The values are known for either even s, ~ ( k  - 1) = + 1 or odd s, ~ ( k  - 1)  = - 1, 
but never both. For example, 

1 
(2.7) 2 (“I 2 2 s +  2s! 

1 (2n)2’ 
L,(2s) = - --IB2’(0)1, L,(2s+ 1) = - - -lE2,(0)I 2 2s! 

where B2s(x) and E2,(x)  are the Bernoulli and Euler polynomials as defined by Abramo- 
witz and Stegun (1965). It is always possible to evaluate Lk( 1) in known transcendentals. 
For k as a prime p ,  a theorem of Dirichlet states that if 

n 
p 3 mod(4), L,(l) = - x h( - p )  JP 

and if 

2 
p 1 mod(4), L,(l) = - In E,, x h(p) 

JP 
where h(p) is the number of classes of the quadratic forms with discriminant p and eo 
is the fundamental unit in the algebraic number field Q(Jp). 

Known values of the L-functions are given in table 1 for various values of s. The 
values of Lk(+) have been evaluated by direct summation of the series using either the 
Euler or Euler-Mclaurin summation formulae. L,(+) = &Ji) was found by evaluating 
q(+). Titchmarsh (1951) has shown that the series for ~ ( s )  sums to (1  -2l-‘)r(s) for all s, 
hence ((4) = -(J2+ l)& We note that ~ ( 1 )  = In 2, although ((1) diverges. 

Results for various Q(a, b, c : s) in terms of Lk are presented in table 2. 

3. Discussion 

The results in table 2 are not meant to be complete in any way. Even where we have left 
gaps in the table, this does not imply that the exact result cannot be found. Again the 
omission altogether of a form such as Q(l,O, 13) does not imply that an exact result 
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cannot be found. Unfortunately we have no criterion at all to tell us whether any given 
Q(a ,b , c )  can be written down exactly in the sense meant here. Further we cannot 
pretend that the results obtained are of any physical significance, since Q(a, b, c )  may be 
directly summed very easily on any computer. There is, however, some aesthetic value 
in expressing multiple sums in known transcendental numbers, eg 

7t 1 ( - l ) '"+n(m2+5n2) -1  = --ln(l+,/5) 
( m , n + O , O )  45 

and they also provide checks for computer programs. 
The results of most probable interest are those for the triangular lattice Q(1, 1 , l )  

and for the rectangular lattices Q(l,O, c), in particular when c is a perfect square. Further 
the sums Qmn(a, b, c : *) are the Madelung constants for the particular lattice, ie the sum 
obtained for the Coulomb interaction of a unit charge at the origin with alternative 
positive and negative charges placed at the other lattice points. 
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